## Rabbit Anti-Amyloid Beta Precursor Protein (APP) [MD333R]: RM0319, RM0319RTU7

Intended Use: For Research Use Only

**Description:** Amyloid beta precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms. Proteolytic cleavage of the APP gives rise to the  $\beta$ -Amyloid and Amyloid A4 proteins, which are present in human platelets. Amyloid deposition is associated with type II diabetes, Down syndrome and a variety of neurological disorders, including Alzheimer's disease. APP undergoes alternative splicing, resulting in several isoforms. Proteolytic cleavage of APP leads to the formation of the 4 kDa  $\beta$ -Amyloid/A4 protein. This protein is involved in the formation of neurofibrillary tangles and plaques that characterize the senile plaques of Alzheimer's patients. APLP1 (amyloid precursor-like protein 1) and APLP2 are structurally similar to APP. Human APLP2 is a membrane-bound sperm protein that contains a region highly homologous to the transmembrane-cytoplasmic domains of APP found in brain plaques of Alzheimer's disease patients.

| a         | • ••  |        |
|-----------|-------|--------|
| Sno       | entre | atione |
| DUC       | unu   | auons. |
| ··· I· ·· |       |        |

| Clone:        | MD333R                                                                              |
|---------------|-------------------------------------------------------------------------------------|
| Source:       | Rabbit                                                                              |
| Isotype:      | IgG                                                                                 |
| Reactivity:   | Human                                                                               |
| Immunogen:    | Synthetic peptide corresponding to residues surrounding Pro620 of human APP protein |
| Localization: | Cytoplasm                                                                           |
| Formulation:  | Antibody in PBS pH7.4, containing BSA and $\leq 0.09\%$ sodium azide (NaN3)         |
| Storage:      | Store at 2°- 8°C.                                                                   |
| Applications: | IHC, IF, IP, WB                                                                     |
| Package:      |                                                                                     |
| Description   | Catalog No. Size                                                                    |

Amyloid Beta Precursor Protein (APP) ConcentratedRM03191 mlAmyloid Beta Precursor Protein (APP) PredilutedRM0319RTU77 ml

## **IHC Procedure\*:**

| Positive Control Tissue:             | Brain, colon cancer, prostate cancer                                                |
|--------------------------------------|-------------------------------------------------------------------------------------|
| Concentrated Dilution:               | 25-100                                                                              |
| Pretreatment:                        | Tris EDTA pH9.0, 15 minutes Pressure Cooker or 30-60 minutes water bath at 95°-99°C |
| Incubation Time and Temp:            | 30-60 minutes @ RT                                                                  |
| Detection:                           | Refer to the detection system manual                                                |
| * Result should be confirmed by an e | established diagnostic procedure.                                                   |



FFPE human prostate carcinoma stained with anti-APP using DAB

## **References:**

- Mutations in the COPI coatomer subunit α-COP induce release of Aβ-42 and amyloid precursor protein intracellular domain and increase tau oligomerization and release. Jacob W Astroski, et al. Neurobiol Aging. May:101:57-69, 2021. doi: 10.1016/j.neurobiolaging.
- 2. Dabigatran reduces thrombin-induced neuroinflammation and AD markers in vitro: Therapeutic relevance for Alzheimer's disease. Syed Waseem Bihaqi, et al. Cereb Circ Cogn Behav. 2021 May 6:2:100014. doi: 10.1016/j.cccb.2021.100014.