

Ultra-Sensitive BRAF Mutation Detection Kit

User Manual

Catalog Number: BRAF0001-20 BRAF0001-50

Size: 20 tests/Kit 50 tests/Kit

Intended Use: For Research Use Only

Doc. No.: 100-BRAF0001

Revision: Rev. B

 $\textit{Orders:} \ \underline{\textit{customercare@medaysis.com}} \quad \textit{Support:} \ \underline{\textit{techsupport@medaysis.com}} \quad \textit{Tel: 510-509-3153} \quad \underline{\textit{www.medaysis.com}}$

1

© Medaysis Company

Medaysis Enable Innovation

1.	PRODUCT INFORMATION	3
1.1	Background	3
1.2	Intended use	3
2.	KIT CONTENT	3
3.	SHIPPING AND STORAGE	3
4.	PRECAUTIONS FOR USE	3
5.	ADDITIONAL REAGENTS AND INSTRUMENTS REQUIRED	4
5.1	Reagents	4
5.2	Materials	4
5.3	Instruments	4
6.	PRODUCT DESCRIPTION AND PRICINPLE	4
7.	PROTOCOL	5
7.1	DNA preparation	5
7.2	DNA quality control preparation	5
7.3	PCR reaction preparation	5
7.4	PCR thermal cycling condition	6
7.5	Run PCR gel eletrophoresis (optional)	6
7.6	Recommended Sanger sequencing protocol	6
8.	DATA ANALYSIS	7
9.	TROUBLESHOOTING GUIDE	8
10.	REFERENCE	9

Enable Innovation

1. PRODUCT INFORMATION

1.1 Background

BRAF, a kinase-encoding gene from the RAS/RAF/MEK/ERK pathway, recently has being studied in all malignant melanomas, including thyroid cancer, malignant melanoma, ovarian cancer, colorectal cancer (1). The most common mutations in BRAF occur at the valine at residue 600 (V600) within exon 15, and may be a predictive biomarker for limited response to anti-EGFR therapy (2).

1.2 Intended use

Medaysis Ultra-Sensitive BRAF Mutation Detection Kit is a highly specific and sensitive PCR technique that is able to detect common somatic mutations in the BRAF gene (V600). Used with Sanger sequencing, it can detect less than 1% (as little as 20 ng to 100 ng of) mutant genes mixed with the wild-type (Table 1). It is designed to amplify BRAF gene from formalin-fixed paraffin-embedded (FFPE) tissues, fresh or frozen tissues, cell smears, fine needle biopsies (FNA) or pleural effusion specimens.

Sample quality assurance for diagnostic tests has not been widely implemented in clinical laboratories.

Table 1. BRAF mutations detected by the kit:

No	Reagents	Exon	Mutation/ Hot spot	Amino Acid Range
1	BRAF Exon 15 Primer mix	15	V600	591~620

2. KIT CONTENT

List of components *:

No.	Catalog Number	Name of Components	Volume (µl) BRAF0001-20	Volume (µl) BRAF0001-50
1	BRAF0021	BRAF Exon 15 PCR primer mix	100	250
2**	BRAF0041	BRAF Exon 15 Seq primer-R	10	25
3	SQC0021	DNA Quality Control Primer Mix	100	250
4	OTH0001	2x PCR Master Mix	1400	3500
5	OTH0002	Nuclease-Free Water	1000	2500

Each component contains enough material to test 20 or 50 DNA samples

3. SHIPPING AND STORAGE

Medaysis BRAF mutation detection kit is shipped at 4°C and recommends being store at -20°C for long-term storage. When stored under the recommended storage conditions in the original packing, the kit is stable for one year from the date of shipment. Repeated thawing and freezing should be avoided. Non-hazardous. No MSDS required.

4. PRECAUTIONS FOR USE

- Please read the instruction carefully before use.
- The kit is intended for research use only, not for diagnostics purpose.
- Experiments should be performed under proper sterile condition with aseptic techniques.
- All reagents should be thawed thoroughly, mix the components by inverting and centrifuge briefly before use.
- Medaysis Ultra-Sensitive BRAF mutation detection kit is a PCR-based test to be used by trained laboratory technicians with the appropriate laboratory facilities and equipment.
- Avoid inhalation and ingestion.
- Positive and negative controls should be run simultaneously with all specimens.

5. ADDITIONAL REAGENTS AND INSTRUMENTS REQUIRED

5.1 Reagents

- DNA extraction
- 6 x sample loading buffer
- Agarose
- 1 x TAE buffer
- Novel juice or ethidium bromide

Orders: <u>customercare@medaysis.com</u> Support: <u>techsupport@medaysis.com</u> Tel: 510-509-3537 <u>www.medaysis.com</u>

^{**} R = reverse primer for Sanger sequencing

Enable Innovation

- 100bp DNA ladder standard (Range: 100 1000 bp)
- Positive control: BRAF Exon 15 mutation control

5.2 Materials

- Sterile, nuclease-free PCR tubes for preparing master mixes
- Adjustable Pipettes for samples preparation
- Disposable sterile pipette tips with filter
- Disposable gloves

5.3 Instruments

- Electrophoresis equipment and power supply
- Sanger Sequencer (*our kit is compatible with DNA analyzer ABI3730 and ABI3130)
- The kit has currently been optimized by using ABI Veriti Thermo Cycler. Table 2. List of compatible PCR instruments which has been tested:
- Optimization might be necessary for other instruments. For more information of instrument compatibility, please contact the technical service at Medaysis.

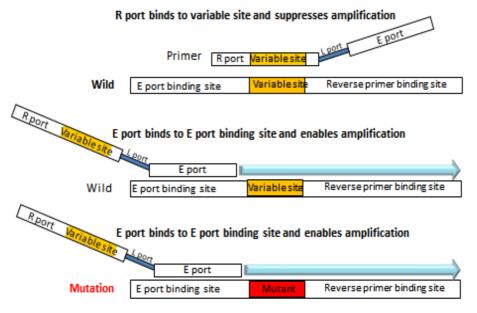
Table 2. PCR instruments

Company	Model
Applied Biosystems	Veriti
Bio-Rad	T100
Biometra	T-3000

6. PRODUCT DESCRIPTION AND PRICINPLE

Ultra-Sensitive BRAF Mutation Detection Kit is a CloDiATM PCR method using novel and proprietary mutation enrichment technology. CloDiATM PCR has two types of technique involved - UnindelTM PCR and StuntmerTM PCR. UnindelTM PCR is designed to detect a broad range of insertions/deletions (universal insertions/deletions) in the target region. The three-primer set consists of forward primer, reverse primer and blocker which inhibits amplification of wild type gene but enables amplification of exonic insertions/ deletions. StuntmerTM PCR is designed to detect a broad range of point mutations in the target region. The structure of both the forwarder and reverse primer has three ports including R Port, E Port, and L Port to suppress amplification of wild type gene but maximize amplification of mutation type. StuntmerTM PCR detects a broad range of point mutations in exons 15 of human BRAF gene. Sanger sequencing can be used to analyze the sequence.

Figure 1. Principle of the Technology.


Orders: customercare@medaysis.com Support: techsupport@medaysis.com Tel: 510-509-3537 www.medaysis.com

Medaysis Enable Innovation

Unindel PCR: Detects a Broad Range of Insertions/Deletions

Blocker binds to deletion site and inhibits amplification Forward primer Blocker Forward primer binding site Reverse primer binding site Reverse primer Blocker unbinds from the site and Forward primer binds to the site to enable amplification Blocker Forward primer Forward primer Forward primer Forward primer Deletion Deletion

Stuntmer PCR: Detects a Broad Range of Point Mutations

7. PROTOCOL

To minimize the risk of contamination with foreign DNA, it is recommended that the kits should be conducted in a PCR workstation.

7.1 DNA preparation

Human genomic DNA must be extracted from formalin-fixed paraffin-embedded FFPE tissue, fine needle biopsy or pleural effusion specimens. For FFPE tissue, Medaysis recommends use of Qiagen DNA extraction kit (QIAamp DNA FFPE Tissue Kit, Cat. No. 56404) for genomic DNA extractions. For instructions, refer to the manufacturer's manuals. The kit can be used with DNA extracted with the most common manual and automated extraction methods. The OD value of genomic DNA extractions should be measured using the spectrophotometer or similar approach. Make sure that OD 260/OD280 value of sample is between 1.8 and 2.0. Extracted genomic DNA specimens may be stored at

Orders: customercare@medaysis.com Support: techsupport@medaysis.com Tel: 510-509-3537 www.medaysis.com www.medaysis.com</

Enable Innovation

20°C for long-term storage or refer to the manufacturer's manuals.

For further information regarding the compatibility of the device with different extraction methods please contact the technical support at Medaysis.

7.2 DNA quality control preparation

Numerous molecular detection tests rely on the quality of the genomic DNA specimens. DNA quality control (DNA QC) primer mix is provided to ensure consistent DNA quality.

- 1. Thaw and centrifuge DNA QC Primer Mix, 2x PCR Master Mix and Sterile H2O at 4°C before use.
- 2. Prepare two PCR tubes and label it as QC and NC.
- 3. Prepare the PCR Reaction Mixture by adding 10 µl 2x PCR Master Mix, 4.8 µ l DNA QC Primer Mix and 4.2 µl Sterile H2O with a total of 19 µl mixture per reaction.
- 4. Add 1 μl (20~100 ng) DNA specimen and 1 μl sterile H2O (negative control) into the PCR reaction mixture.
- 5. Pipette the mixture gently and centrifuge briefly.
- 6. Mix and Sterile H₂O. Then aliquot 19 μl mixture per reaction to the PCR tube and add 1μl DNA specimen on each tube

Note: If more than one DNA specimens need to be tested, we suggest preparing a reaction mix containing appropriate amount of 2x PCR Master Mix, DNA QC Primer.

7.3 PCR reaction preparation

- 1. Thaw and centrifuge all tubes (BRAF Exon 15 Primer mix, 2x PCR Master Mix and Sterile H2O) at 4°C before use.
- 2. Prepare PCR tube and label it as S1.
- 3. Prepare separately PCR Reaction Mixture by adding $10\mu l\ 2x\ PCR$ Master Mix, $4.8\mu l\ Primer$ Mix and $4.2\mu l\ Sterile\ H2O$ with a total of $19\mu l\ mixture\ per\ reaction$ for S1
- 4. Add 1μl (20~100 ng/μl) DNA specimen into the PCR reaction mixture S1
- 5. Pipette the mixture gently and centrifuge briefly

Note: Same as the preparation of the DNA quality control, if more than one DNA specimens need to be tested, it is recommended to prepare a reaction mix of table 3 & 4 (No. 2~4) and aliquot 19µl to each PCR tube.

Table 3. PCR tube preparation per one reaction:

S1	DNA QC	PC	NC
Exon 15 mixture	DNA quality control	Positive control	Negative control

Table 4. Prepare the reaction mixture per one reaction according to the table below:

No.	Component	Volume (µl)
1	DNA specimen (20~100 ng/µl) / positive control	1
2	Each primer Mix	4.8
3	2x PCR Master Mix	10
4	Nuclease-Free Water	4.2
	Final Volume	20

7.4 PCR thermal cycling condition

Table 5. Follow the PCR protocol exactly when operate PCR instrument

	Temperature (°C)	Time (min)	Cycle(s)
Stage 1			
Pre-denaturation	95	10	1
Stage 2	•		•

Enable Innovation

Denaturation	94	1	45
Blocking Primer Annealing	65	3	
Primer Annealing	61	1	
Elongation	72	1	
Stage 3			
Extension	72	10	1
Preservation	10	∞	

7.5 Run PCR gel electrophoresis (optional)

Before Sanger sequencing, the PCR products can be examined by the standard agarose gel electrophoresis (2% agarose in 100ml 1X TAE buffer). The DNA will be visualized by ethicium bromide or novel juice fluorescence.

- 1. Loading PCR products: mix 5μ l of PCR products with 1μ l of 6X novel juice loading dye and load in the 2% agarose gel.
- 2. Check the results of each amplicon (~200 bp)
- 3. Perform Sanger sequencing referring to the manufacturer's manuals. Store the rest of PCR products at 4°C. Note: For the instructions of DNA sequencer, refer to the manufacturer's manuals.

7.6 Recommended Sanger sequencing protocol

Our kit is validated and compatible with DNA analyzer ABI3730. For the instructions of DNA sequencer, refer to the manufacturer's manuals.

For more information of instrument compatibility, please contact the technical service at <u>techsupport@medaysis.com</u>. Note: PCR products may need to be cleaned up before performing Sanger sequencing.

8. DATA ANALYSIS

PCR products must be sequenced for further analysis. For data analysis, please interpret results refer to the manufacturer's manuals of the software.

Note: To get reasonable interpretation of your results, it is recommended to eliminate baseline "noise" of data. For the common mutation information, please refer to the following data.

Figure 2. Example of sequence data

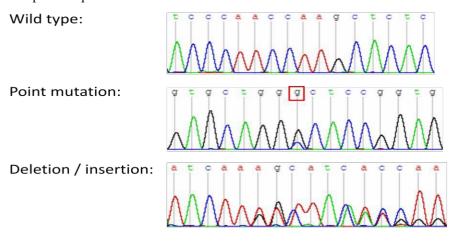


Figure 3. Example of sequence analysis

(A) Harbored a C-To-T transition; (B) Harbored a C-to-T transition and G-to-A transition; (C) Harbored a G-to-A transition.

 $Orders: \underline{customercare@medaysis.com} \quad Support: \underline{techsupport@medaysis.com} \quad Tel: 510-509-3537 \quad \underline{www.medaysis.com} \quad Delta = 100-509-3537 \quad \underline{www.medaysis.com} \quad Delta = 100-509-357 \quad \underline{www.medaysis.com} \quad Delta = 100-509-357 \quad \underline{www.medaysi$

Enable Innovation

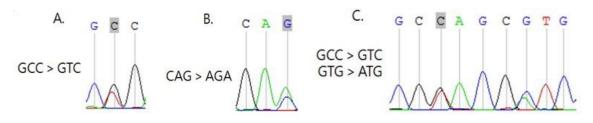
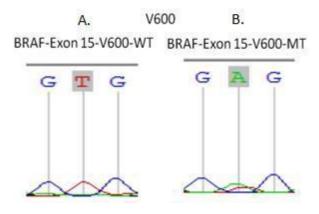



Figure 4. Example of sequence analysis of BRAF mutation (A) BRAF V600 Wild type; (B) Harbored a T-to-C transition refer to V600E

9. TROUBLESHOOTING GUIDE

This troubleshooting guide may be helpful in solving similar problems that may arise. If there is any other question, please welcome to contact techsupport@medaysis.com.

Problems	Questions	Suggestions	
No Amplicon /No Band	No PCR products observed on gel electrophoresis.	 Check the results of sample quality control. If there is no amplicon shown at the size of 400bp, DNA may be fragmented during inadequate fixation steps. Please check your sample fixation process. Remove presence of inhibitor in reaction in case it exists, and then repeat SQC reaction. Inspect temperature calibration on PCR instrument. Check both the storage conditions and the expiration date on the label. Use a new kit if needed. 	
Non-Specific Amplification/ Multiple Products/ Wrong Size Band Amplified	How to eliminate the multiple or non-specific PCR products?	 Conduct kit in PCR workstation to minimize the risk of contamination with foreign DNA. Inspect temperature calibration on PCR instrument. Blocking primer annealing temperature is too low. Increase 2 to 3°C at annealing step to reduce non-specific binding and amplification. 	
Equipment Variation	Have you checked the discrepancy among different PCR instruments?	Yes. We had done parallel tests on different instruments to make sure our kit compatible with different instrument models including ABI, Biometra, BioRad (Table2).	
Novel Mutation		Please check any existed mutations on COSMIC website or do parallel tests with the proven data.	

 $Orders: \underline{customercare@medaysis.com} \quad Support: \underline{techsupport@medaysis.com} \quad Tel: 510-509-3537 \quad \underline{www.medaysis.com}$

© Medaysis Company

Enable Innovation

10. REFERENCE

- 1. BRAF V600E: impli-cations for carcinogenesis and molecular therapy. Cantwell-Dorris ER, et al., Mol Cancer Ther. 10:385–394, 2011.
- 2. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Di Fiore, P.P., et al., Cell 1987.
- 3. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Prahallad, A., et al., Nature, 483,100–103, 2012.

Doc. 100-BRAF0001

Rev. B

9