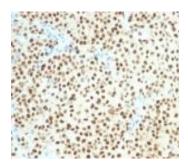
Mouse Anti-SOX10 [SOX10/1074]: MC0937, MC0937RTU7

Intended Use: For Research Use Only

Description: SOX10 is a member of the SRY-related HMG-box (SOX) family of transcription factors involved in the regulation of embryonic development and in the determination of cell fate. During development, SOX10 first appears in the forming neural crest and continues to be expressed in Schwann cells. It is important for differentiation, maturation and maintenance of Schwann cells and melanocytes. In normal tissues, SOX10 is expressed in Schwann cells and glial cells in the nervous system. It is also detected in melanocytes and epithelial cells of salivary gland and mammary gland. In tumor tissues, SOX10 labels melanoma and tumors of neural crest origin. A recent study reported the expression of SOX10 in basal-like, unclassified triple-negative breast carcinoma. Thus, breast carcinoma must be considered in the differential diagnosis of melanoma for a SOX10-positive metastatic malignant neoplasm.


Specifications

Description	Catalog No. Size
Package:	
Applications:	IHC, WB
Storage:	Store at 2°- 8°C
Formulation:	Purified antibody in PBS pH7.4, containing BSA and $\leq 0.09\%$ sodium azide (NaN3)
Localization:	Nucleus
Immunogen:	Recombinant human SOX10 protein fragment aa115-269
Reactivity:	Human, mouse
Isotype:	IgG2b/k
Source:	Mouse
Clone:	SOX10/1074

Description	Catalog No.	Size
SOX10 Concentrated	MC0937	1 ml
SOX10 Prediluted	MC0937RTU7	7 ml

IHC Procedure

Positive Control Tissue:	Melanoma, brain	
Concentrated Dilution:	50-200	
Pretreatment:	Tris EDTA pH9.0, 15 minutes Pressure Cooker or 30-60 minutes water bath at 95°-99°C	
Incubation Time and Temp:	30-60 minutes @ RT	
Detection:	Refer to the detection system manual	
* Result should be confirmed by an established diagnostic procedure.		

FFPE human melanoma stained with anti-SOX10 using DAB

References:

- 1. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. De Logu F, et al. Nat Commun 8:1887, 2017.
- 2. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Corces MR, et al. Nat Methods 14:959-962, 2017.